Storage Class in C

Variable in C Programming

e Variables are the names you give to computer memory locations which are
used to store values in a computer program.

e Every variable in C programming has two properties: type and storage class.

e Type refers to the data type(int, char, float, double, etc.)of a variable. And,
Storage class determines the scope, visibility and lifetime of a variable.

If you are defining a variable :
Storage class _ data type _ variable name

auto int a;

Storage Class

e The storage class determines the part of the memory where the variable
would be stored. Here we will discuss two storage location in computer : CPU
Registers and Memory

e The storage class also determines the initial value of the variable.

e It used to define the scope and lifetime of variable.

CPU Register And Memory

A value stored in a CPU register can always be accessed faster than the one that
is stored in memory.

Types of Storage Classes

There are four types of storage classes in C:
I. Automatic storage class
ii. Register storage class
iii. Static storage class

iv. External storage class

Automatic Storage Class

e Automatic variables are allocated memory automatically at runtime.

e The visibility of the automatic variables is limited to the block in which they are
defined.

e The scope of the automatic variables is limited to the block in which they are
defined.

e The automatic variables are initialized to garbage by default.

e The memory assigned to automatic variables gets freed upon exiting from the
block.

e The keyword used for defining automatic variables is auto.

e Every local variable is automatic in C by default.

Automatic Storage Class

Keywords : auto

Storage : memory

Default initial value : garbage value*

Scope : local to the block in which the variable is defined

Life : till the control remains within the block in which the variable is defined.
auto int a=10;

*garbage value: ¢ does not initialize most variables to a given value (such as zero) automatically. Thus when a
variable is assigned a memory location by the compiler, the default value of that variable is whatever (garbage) value
happens to already be in that memory location.

Example: Automatic storage class

© N o g~ 0D

// Example 1

#include <stdio.h>

int main()

{

int a; //auto

char b;

float c;

printf("%d %c %f",a,b,c); // printing initial
default value of automatic variables a, b,
and c.

return O;

}

—_

—_—
—_

12.
13.
14.

15.

© v © N o g &~ W DN

// Example 2
#include <stdio.h>
int main()

{

inta=10,;
printf("%d ",++a);

{

inta = 20;

for (i=0;i<3;i++)

{

printf("%d ",a); // 20 will be printed 3 times since it
is the local value of a
}

}

printf("%d ",a); // 11 will be printed since the scope
of a=20is ended.

}

Automatic Vs Register Storage Class

Register Storage Class

e The variables defined as the register is allocated the memory into the CPU registers
depending upon the size of the memory remaining in the CPU.

e We can not dereference the register variables, i.e., we can not use & operator for the
register variable.
The access time of the register variables is faster than the automatic variables.

e The initial default value of the register local variables is 0.
The register keyword is used for the variable which should be stored in the CPU
register. However, it is compiler’s choice whether or not; the variables can be stored in
the register.

e We can store pointers into the register, i.e., a register can store the address of a
variable.

e Static variables can not be stored into the register since we can not use more than one
storage specifier for the same variable.

Register Storage Class

Keywords : register

Storage : CPU Register

Default initial value : garbage value

Scope : local to the block in which the variable is defined

Life : till the control remains within the block in which the variable is defined.

Register Storage Class

e If the microprocessor has 16-bit registers then they cannot hold a float value
or a double value which requires 4 bytes(32-bit) and 8 bytes(64-bit)

e If you want to use the register storage class(16-bit microprocessor) with float
and double variable then you won't get any error messages. Your compiler
would treat the variables as auto storage class.

Register Storage Class Examples

1. #include <stdio.h
Include <stdio.n> 1. #include <stdio.h>

2. intmai
int main() 2. int main()
3.
{ 3. |
4. registerint a; / variable a is allocated memory in the . .
4. registerinta=0;
CPU register. The initial default value of ais 0. PP o
5. printf("%u", &a); // This will give a
5. printf("%d",a); L .
compile time error since we can
6. }

not access the address of a
register variable.
6. }

Static Storage Class

e The variables defined as static specifier can hold their value between the
multiple function calls.

e Static local variables are visible only to the function or the block in which they
are defined.

e A same static variable can be declared many times but can be assigned at
only one time.

e Default initial value of the static integral variable is 0 otherwise null.

e The visibility of the static global variable is limited to the file in which it has
declared.

e The keyword used to define static variable is static. E.g. static int a;

Static Storage Class

Keyword : static

Storage : memory

Default initial value : zero

Scope : local to the block in which the variable is defined

Life : value of the variable persists between different function calls.

1. #include<stdio.h>
2. void sum()
Example: Static Storage Class A
4. staticinta=10;
)) 5. staticint b = 24;
1. #include<stdio.h>
6. printf("%d %d \n",a,b);
2. static charc;
7. at++;
3. staticinti; 8 bt
4. static float f; 9. 3
5. static char s[100]; 10. void main()
6. void main () 1. |
7. | 12. intji
8. printf("%d %d %f %s",c,i,f); // the initial default value 13. for(i = 0; i< 3; i++)
of ¢, i, and f will be printed. 14 |
9. } 15. sum(); // The static variables holds
their value between multiple function
calls.
16. }

17.)

Extern Storage Class

e The external storage class (or global variable)is used to tell the compiler that the variable defined as
extern is declared with an external linkage elsewhere in the program.

e The variables declared as extern are not allocated any memory. It is only declaration and intended to
specify that the variable is declared elsewhere in the program.

e The default initial value of external integral type is 0 otherwise null.

e We can only initialize the extern variable globally, i.e., we can not initialize the external variable
within any block or method.

e An external variable can be declared many times but can be initialized at only once.

e If avariable is declared as external then the compiler searches for that variable to be initialized
somewhere in the program which may be extern or static. If it is not, then the compiler will show an

error.

Extern Storage Class

Keywords : extern
Storage : memory
Default initial value : zero

Scope : global

Life : as long as the program’s execution does not come to an end.

External Storage Class

1. #include <stdio.h>

1. #include <stdio.h>
2. intmain() 2. inta;
3. { 3. intmain()
4. externinta; 4, {
5. printf(*%d"a); 5. externint a; // variable a is defined globally,
6) the memory will not be allocated to a
6. printf("%d",a);
7. }

Extern Storage Class: Examples

1. #include <stdio.h> 1. include <stdio.h>

2. intg; 2. intmain()

3. intmain() 3. |

4. | 4. externint a; / Compiler will search

5. externinta = 0;// this will show a compiler error here for a variable a defined and
since we can not use extern and initializer at same initialized somewhere in the
time pogram or not.

6. printf("%d",a); 5. printf("%d",a);

7.} 6. }

7. inta=20;

Extern Storage Class Example

1. externinta;

2. inta=10;

3. #include <stdio.h>
4. int main()

5 |

6. printf("%d",a);

7. }

8.

int a = 20; // compiler will show an error at this line

Summary: Storage Class

Storage

Classes

auto

extern

static

register

Storage

Place

RAM

RAM

RAM

Register

Default
Value

Garbage

Value

Zero

Zero

Garbage

Value

Scope

Local

Global

Local

Local

Lifetime

Within function

Till the end of the main program Maybe

declared anywhere in the program

Till the end of the main program, Retains

value between multiple functions call

Within the function

